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ABSTRACT
<.
/57

By means of a quantum-mechanical phase space distribution function
introduced by von Roos, the Schroedinger equation appropriate to a plasma
can be transformed into a quantum mechanical generalization of the Liou-
ville equation. From the consequent analog of the BBGKY hierarchy, the
two-e¢lectron correlation function in a spatially homogeneous fully ionized
plasma is obtained by assuming that the icons can be treated as an immobile
uniformly charged background. The resulting equation for the electron
distribution function is a quantum mechanical Boltzmann equation, whose
collision integral differs from that derived by Balescu and others in
that exchaunge effects are more properly taken into account. In particular,
a new term appears in the collision integral which is identifiable with
the Mott correction to electron-electron scattering, and is shielded by
the dynamical dielectric constant of the plasma in a somewhat unexpected
fashion. A consequence of this term is an alteration of the large momentum

transtfer contribtuions to the collision integral appropriate to a "classical"

plasma,




A central problem in the description of non-equilibrium phenomena
in classical plasmas is that of obtaining from the N-particle Liouville
equation a kinetic (or "Boltzmann') equation for the single-particle
phase space distribution function. Proceeding along different lines,

(1-4)

several investigators have derived a kinetic equation valid in the
limit where the number of particles in a Dehve sphere is large compared
to unitv,
) * 3 . .
For the particular case of an clectron plasma in a uniform back-

sround of neutralizing positive charge and no mapnetic field, onc obtains

the coupled equations
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Equation (1) is the kinetic equation, in which electron-clectron
. ! e . . .SCF
interactions enter both through the sclf-consistent electric field, E ,

and through the 'collision integral," representing the effect of fluctua-

tions of the electric field about this value. Equation (2) is Poisson's

*In the interest of simplicity, the considerations of this paper will be
limited to this case. The extension of the method to include ionic
degrees of treedom and external magnetic tields is relatively straight-
forward and will be published elsewhere.
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equation for the self-consistent field, n being the average electron
(and ion) number density. The third equation gives the specific form
of the collision integral which is seen to depend on the dynamic die-

lectric constant of the plasma, as given by the expression

Klg,w) =1+ W (g §-%fv)
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where hﬁ:=‘VW71€/%\ is the plasma frequency squared and € is a positive
infinitesimal. The constant ¢ appearing in (2) - (4) is determined by

the normatlization of the sinpgle-clectron distribution function, f, and

is unity tor the particular choice
3 3 -
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where\/ is the volume of the system (a convention we will generally
follow unless otherwise indicated).
The gquantum mechanical generalization of these equations is of

some interest, both ftor the purpose ot extending the classical kinetic

theory of plasmas to those regimes of densivty and temperature where quan-

tum effects must be considered, as well to provide a description of

intrinsically quantum mechanical systems (e.g. the electron gas in a

metal) which makes more extensive use of classical concepts than the
widely prevalent alternative formulations based on quantum field theory,
Although our present conceru is clearly limited to the tirst of these
objectives, it is worth noting in passing that.the kinetic theory of

(5)

quantum plasmas on which this paper is based appears to be a promis-

ing approach to the general quantum many-body problem.

(4)
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The first definitive extension of equations (l) - (4) to quantum

(6)

plasmas is apparently that of Balescu

(7

Basically similar subsequent

and Guernsey(8) may also be cited. 1In essence, these

(9

studies by Silin
investigations proceed from Wigner's observation that by shifting

attention from the wave function of a many-particle system to a guantum-

mechanical phase space distribution function (q.m.d.f.) derived therefrom,

it is possible to formulate the quantum statistical mechanics of inter-
acting svstems (i.e. plasmas) in a fashion which bears a closge resemblance
to the classical theory. Indeed, the q.m.d.f. obeys an equation which is
a quantum generalization of the Liouville equation and, in fact, becomes
identical to the Liouville equation in the 1imit'F —> O . Then, by
proceeding in strict analogy to the so-called BBGKY approximation scheme
which, in the classical situation, leads from the Liouville equation to
the Vliasov Theory in first approximation, and to equations (1) - (4) in
the sccond, one generates a corresponding kinetic theory of quantum plasmas.

The quantum generalization of the collision integral (equation (3))
which results from this program may be written in the form

(Fw) = -4ne
It
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where the tildes serve to distinguish quantum-corrected quantities from
those introduced carlier.

The dielectric constant appearing in (6) is the quantum generaliza-
tion of (4) and is usually referred to in the literature as the RPA
("random phase approximation”™) dielectric constant. It is given by the
expression

Wig,w) = [+ 9F wm(fy Fiveng)-F
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In the limit ,—5 9 , K —K, £—f{, and (3) is readily recovered from
(o)
The physical significance of cquation (6) has been clarified by

(10)

the observation of Wyld and Pines , that it could have been written
down immediately using the ''golden rule' of scattering theory, if one
makes the plausible conjecture that the Coulomb scattering matrix element
should be augmented by the dynamical dielectric constant of the plasma.
Specitically, it one takes as the matrix c¢lement for the scattering of

~

two ¢lectrons {rom (wave-vector) states f’ )fl to states (*P +%) (f'_?)
~ ~~ )

the quantity
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where EPE T‘IP /:U"\ , then the "golden rule" for the transition

probability per uni{t time of this process:
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leads directly to (6) when the appropriate density of states is introduced.
Viewed in the foregoing light, a deficiency of the collision

integral given by equation (6) is immediately apparent. For as is well

known, the total cross-scction for electron-clectron scattering contains

contributions from direct Coulomb scattering, exchange scattering, and

the interference between these two processes (the so-called "Mott' term).

Ignoring for the moment the influence of the dielectric properties of

the plasma, one tinds that when exchange is included, the (spin-averaged)

matrix clement appearing in (YY) is given in Born approximation by
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By symmetry, the first two terms in the curly bracket of (10) would contri-
bute equally to the collision integral, 50 one would expect the‘/%9factor
in (6) to be replaced by (in the limit E2—91)

I
P g (o))’

where the additional term represents the Mottt correction,  We cannot simply

add such o correction to (0), however, since fC fa by no means appiremt
in what fashion the diclectric properties of the plasma will modify this

term.

(10)

(11)



The absence from equation (6) of the term just cited is a conse-
quence of the well-known inability of the Wigner q.m.d.f. formalism to
fully incorporate exchange cffects in a tractable fashion. For this
reason, increasing use has been made in recent years of an alternative
. . 4 an . .
tormulation due to von Roos . Employing a somewhat different defini-
tion for the q.m.d.f., he is again led to a quantum generalization of the
Liouville equation which, however, enables exchange effects to be included
in a natural manner, In this paper, therefore, we wish to report the
results of a program quite similtar to those leading to cquation (6)
(particularly that of Guernscy ) but differing in that the von Roos
form ot the quantum Liouville equation is used. 1In essence, the point

of departure is that the collision integral thus obtained represents a

correction to the Hartree-Fock self-consistent field whereas that obtained

in the Wigner formalism represents a correction to the Hartree s.c.f.

. . } e k3~
including, however, enouph of exchange to introduce the [\—- nh

am?
tactors in (b) charactevistic of the exclusion principle.

The details of the calculation are too lengthy to discuss in the
limited time and space available here and will be published elsewhere.
Simply stated, we work with the first two equations of the quantum BBGKY
hierarchy for the "reduced" q.m.d.f.'s. The first of these couples the
singlet and doublet distributions; the second, the doublet and triplet.

The doublet distribution tunction fa then written ag the properly symnetrized
product ot singlet functions which one obtains in the Hartree-Fock approxi-

mation, plus an unknown two-particle correlation funztion. The triplet

function is similarly decomposed into its Hartree-Fock expression plus
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cyclical products of singlet and two-particle correlation functions. The
coupled equations are thus closed, and one first obtains a solution for
the correlation function expressed in terms of the singlet distribution.
Insertion of this expression into the first BBGKY equation yields the
desired kinetic equation for the singlet function.

We obtain in this fashion the following kinetic cquation
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Coll,

The left hand side of (12) is the quantum and exchange corrected Vlasov
: , : (11) :
cquation which has been discussed elsewhere . In it, we have employed

the Fourier transtorms of the external and selt-consistent potentials

which are related to the corresponding electric fields by

~

E(xt) =-V, (?“')—330\3‘6« e % P(4,1)

(12)
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The self-consistent field is naturally still given by (2). For the col-
lision integral, we obtain in place of (6) the expression

of 4
— - - 4— ne davlja'i
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(14)

Comparing (14) and (6), we note that the only difterence is in the
appearance ot the "Mott" term anticipated earlier. The curious result
that it is shielded by the real part of K—l rather than \K\—z is unexpected
and not understood. In this regard, we remark that in deriving (14),
additional terms were obtained which are readily identifiable as three-body
collision processes, in which the direct coulomb scattering of two electrons
is accompaniecd by a virtual exchaunge scattering of one of them with a
third c¢lectron.  We have not included such terms in (14) because other
three-hody contributions would enter when a higher-order truncation of
the BBGKY chain is performed, The possibility that a more exact treatment
of threc-body and higher correlations would introduce terms into the col-
lision integral which etfectively alter the shielding of the Mott term
must nevertheless be recognized.

A few remarks concerning (l4) are in order. First, it is easily

shown that the H-theorem is satisfied so that the collision integral

vanishes for the Fermi-Dirac distribution. Due to the presence of the



Mott term, however, the uniqueness of this distribution is by no means
apparent. Second, it must be emphasized that (14) is only valid for

quasi-homogencous plasmas in which appreciable density changes occur

over distances large compared to the "mean-fre: path" (and times large
compared to the 'collision time'), just as in the classical case.
Finally, we note that a straight-forward expansion of (14) in
powers of f, leads again to (3) in the classical limit since the Mott
term is ot nrdvr‘tn . It is clear that only scatterings in the nearly
torward direction contrvibutes to this limit, i.c¢., the momentum transfer
t‘%_,,, o - The collision integral (3), however, is logarithmically
divergent at large %,(i.e. close collisions). As pointed out by the

0
study of Wyld and Pines(l )

, an alternative classical limit of the
quantum-mechanical collision integral can be taken which preserves the
role of finite momentun transfers and avoids convergence difficulties at
laryge ‘ﬁ , at the expense, however, of Jdivergent behavior at small f}
(distant collisions).

Specifically, the substitution @ =W casts (1l4) into the form

oL ™ o e L me B
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In the limit |, — 0, all that happens now is ‘f—?l so that

(15) goes over into the ordinary Boltzmann collision integral appropriate

to the Mott scattering cross-section. We are thus led to the conclusion

that the new collision integral will lead to an alteration of the cut-off
procedure usually applicd to (3) at large %, . In particular, we note that
as W -—00, the integrand of (15) approaches half its ordinary value, cor-
responding to the fact that the Pauli principle inhibits close encounters
between electrons of parallel spin.
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enlightening crviticism of Dr. Oldwip von Roos throughout all phases ot

this rescarvch,
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